7 resultados para TRACE METALS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the extent of human impact on a pristine Antarctic environment, natural baseline levels of trace metals have been established in the basement rocks of the Larsemann Hills, East Antarctica. From a mineralogical and geochemical point of view the Larsemann Hills basement is relatively homogeneous, and contains high levels of Pb, Th and U. These may become soluble during the relatively mild Antarctic summer and be transported to lake waters by surface and subsurface melt water. Melt waters may also be locally enriched in V, Cr, Co, Ni, Zn and Sri derived from weathering of metabasite pods. With a few notable exceptions, the trace metal concentrations measured in the Larsemann Hills lake waters can be entirely accounted for by natural processes such as sea spray and surface melt water input. Thus, the amount of trace metals released by weathering of basement lithologies and dispersed into the Larsemann Hills environment, and presumably in similar Antarctic environments, is, in general, not negligible, and may locally be substantial. The Larsemann Hills sediments are coarse-grained and contain minute amounts of clay-size particles, although human activities have contributed to the generation of fine-grained material at the most impacted sites. Irrespective of their origin, these small amounts of fine-grained clastic sediments have a relatively small surface area and charge, and are not as effective metal sinks as the abundant, thick cyanobacterial algal mats that cover the lake floors. Thus, the concentration of trace metals in the Larsemann Hills lake waters is regulated by biological activity and thawing-freezing cycles, rather than by the type and amount of clastic sediment supply. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments, mosses and algae, collected from lake catchments of the Larsemann Hills, East Antarctica, were analysed to establish baseline levels of trace metals (Ag, As, Cd, Co, Cr, Cu, Ni, Sb, Pb, Se, V and Zn), and to quantify the extent of trace metal pollution in the area. Both impacted and non-impacted sites were included in the study. Four different leaching solutions (1 M MgCl2, 1 M CH3COONH4, 1 M NH4NO3, and 0.3 N HCl) were tested on the fine fraction (< 63 mu m) of the sediments to extract the mobile fraction of trace metals derived from human impact and from weathering of basement lithologies. Results of these tests indicate that dilute HCl partly dissolves primary minerals present in the sediment, thus leading to an overestimate of the mobile trace metal fraction. Concentrations of trace metals released using the other 3 procedures indicate negligible levels of anthropogenic contribution to the trace metal budget. Data derived from this study and a thorough characterisation of the site allowed the authors to define natural baseline levels of trace metals in sediments, mosses and algae, and their spatial variability across the area. The results show that, with a few notable exceptions, human activities at the research stations have contributed negligible levels (lower than natural variability) of trace metals to the Larsemann Hills ecosystem. This study further demonstrates that anthropogenic sources of trace metals can be correctly identified and quantified only if natural baselines, their variability, and processes controlling the mobility of trace metals in the ecosystem, have been fully characterised. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphorus-availability tests typically provide an indication of quantity of P available (Colwell bicarbonate-extractable P), or of the intensity of supply (0.01 M CaCl2-extractable P). The soil's capacity to buffer P is more difficult to assess, and is generally estimated using a P-adsorption curve. The diffusive gradient in thin films (DGT) approach may provide a simpler means of assessing a soil's ability to maintain soil solution P. Optimal extraction conditions were found to be 24 h exposure of DGT samplers to saturated soil. The DGT approach was evaluated on a range of 24 soils, some of which had high Colwell- (>100 mu g g(-1)) and Bray 1- (>30 mu g g(-1)) extractable P content, but showed a tomato (Lycopersicon esculentum Mill.) yield response to the addition of P fertilizer. The DGT approach provided an excellent separation of soils on which tomato showed a yield response, from those where fertilizer P did not increase dry-matter yield. Phosphorus accumulation was strongly correlated with soil solution P concentration and anion exchange resin-extractable P, but showed poor correlation with Colwell- or Bray 1-extractable P. The DGT P accumulation rate of 3.62 x 10(-7) to 4.79 x 10(-5) mol s(-1) m(-3) for the soils tested was comparable to the uptake rate of roots of tomato plants that were adequately supplied with P (2.25 x 10(-5) mol s(-1) m(-3)).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report high-precision inductively coupled plasma mass spectrometric (ICP-MS) compositional data for 39 trace elements in a variety of dust deposits, trapped sediments and surface samples from New Zealand and Australia. Dusts collected from the surface of alpine glaciers in the Southern Alps, New Zealand, believed to have undergone long-distance atmospheric transport from Australia, are recognizable on account of their overabundances of Pb and Cu with respect to typical upper crustal values. Long-travelled dust from Australia therefore scavenges these and other metals (e.g. Zn, Sb and Cd) from the atmosphere during transport and deposition. Hence, due to anthropogenic pollution, long-travelled Australian dusts can be recognized by elevated metal contents. The relative abundance of 25 other elements that are not affected by atmospheric pollution, mineral sorting (Zr and Hf) and weathering/solubility (alkali and earth alkali elements) reflects the geochemistry of the dust source sediment. As a result, we are able to establish the provenance of dust using ultra-trace-element chemistry at regional scale. Comparison of long-travelled dust chemistry with potential Australian sources shows that fits of variable quality are obtained. We propose that the best fitting potential source chemistry most likely represents the major dust source area. A binary mixing model is used to demonstrate that admixture of small quantities of local dust provides an even better fitting dust chemistry for the long-travelled dusts. Copyright (c) 2005 John Wiley & Sons, Ltd.